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Abstract

"Cardiovascular diseases (CVDs) are the leading cause of death globally, taking an estimated 17.9 million lives each year,
with 85% of these deaths due to heart attacks and strokes" (World Health Organization). In response to this significant
health issue, our project aims to create a machine learning model to accurately and quickly determine an individual’s risk of

heart disease. Utilizing supervised machine learning, specifically a neural network, we trained our model on 253,680 survey
responses from the Heart Disease Health Indicators Dataset on Kaggle. The neural network identifies key biomarkers by
modeling both linear and non-linear relationships using a brain-like structure. After processing the data through a series
of neurons and activation functions, the model provides a binary prediction of heart disease and heart attack risk. This
tool is designed to supplement health assessments and encourage individuals to seek professional medical advice if they are
concerned about their heart health. By highlighting responses correlated with an increased risk, we hope to motivate users
to consider lifestyle changes and facilitate informed discussions with their healthcare providers.

1 Introduction

1.1 Project Overview

The purpose of this project was to create a machine learn-
ing model that could quickly and accurately determine if an
individual is at risk of heart disease. We utilize a neural net-
work, a supervised learning machine learning model that
is trained on 253,680 survey responses from the Heart Dis-
ease Health Indicators Dataset found on Kaggle. The model
works by modeling linear/non-linear relationships in key
biomarkers using a brain-like structure. After running the
data through a series of neurons and activation functions,
the model provides a binary prediction indicating the risk
for heart disease/attack.

1.2 Our Objective

Our goal with this project is to provide supplemental infor-
mation regarding an individual’s risk of heart disease. We
do not aim to take the place of a physician and regardless
of the results of the survey, we encourage all individuals
to consult a health professional if they are worried about
their own risk of heart disease. The intended audience is
anybody interested in learning more about their health and
risk of heart disease. Since our model highlights responses
that a user inputs that are correlated with an increased risk
of heart disease, we hope our model helps individuals take a
closer look at their lifestyles and maybe think about making
changes based on their results. We also advocate for users
who get an at-risk prediction to have a conversation with
their doctor next time they go for an annual checkup.

1.3 Inspiration for the Project

Initially we considered creating a stock trading Al model be-
cause of our interest in the intersection between finance and

technology. However, while exploring the different Kag-
gle datasets, we discovered other datasets that caught our
attention. Among those were an eye disease classification
dataset, a traffic signs dataset, a hair health dataset, and of
course the heart disease health indicator dataset. We ex-
plored the importance of each topic to see how we could
have the biggest impact and discovered that the leading
cause of death worldwide for men and women was heart
disease. Cardiovascular disease accounts for nearly a third
of all deaths worldwide, it’s a big problem so we hoped
to create an accessible and accurate model that could help
guide people worried about their risk of heart disease to
have more information about their risks.

2 Background
2.1 Heart Disease/Heart Attack

Heart disease refers to various conditions affecting the
heart, including coronary artery disease, heart failure, and
arrhythmias. A heart attack, or myocardial infarction, oc-
curs when blood flow to a part of the heart is blocked, caus-
ing damage to the heart muscle. Common risk factors in-
clude high blood pressure, high cholesterol, smoking, obe-
sity, and a sedentary lifestyle.

2.2 Weighted Loss Function

A weighted loss function is a type of loss function that as-
signs different weights to different types of errors. This ap-
proach is often used when some types of errors are con-
sidered more costly or critical than others. By assigning
higher weights to more significant errors, the model is pe-
nalized more for these errors, guiding it to focus on mini-
mizing them during training.


https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
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2.3 Supervised Learning

Supervised learning is a type of machine learning where a
model is trained on labeled data. This means that each train-
ing example includes input data and the corresponding cor-
rect output. The model learns to map inputs to outputs by
minimizing the error between its predictions and the actual
outcomes. Common algorithms include linear regression,
decision trees, and neural networks.

2.4 Neural Network

A neural network is a machine learning model inspired by
the human brain’s structure. It consists of layers of in-
terconnected nodes (neurons), each performing a linear or
non-linear transformation on the input data. Neural net-
works are used to model complex patterns and relationships
in data, making them suitable for tasks like image recogni-
tion and natural language processing.

3 Methods
3.1 Loading the dataset

We are able to preview the contents of the dataset using
head - a function to display the first n data points (default
n = 5). Looking closely at the dataset, the dataset contains
21 features excluding the target. Some values are consistent
with values of either 0 or 1, denoting a binary flag of either
true(1) or false(0) while other metrics cannot be measured
by a binary flag like Age or BMI. In order to contextual-
ize the non-binary values in relation to the rest of the data
we need to utilize some normalization techniques that will
appear in later sections. We’ll additionally set the random
seed to 42 to ensure reproducibility of the results.

3.2 Initial Data Analysis

To get a better understanding of how the features relate to
the target we can plot a correlation matrix. A correlation
matrix uses a method such as Pearson correlation coeffi-
cient to measure how two variables x, y scale linearly with
one another. Techniques such as Logistic Regression rely
on a strong linear relationship between a given feature and
the target to accurately model their relationship and pro-
vide accurate predictions. Features with a higher correla-
tion coeflicient with the target are more likely to be impor-
tant in predicting the target. For instance in our dataset, the
feature High Blood Pressure (labeled HighBP) has a corre-
lation coefficient of 0.21. Although this is a generally low
correlation coefficient, relative to the other features in the
dataset, it is the highest. Suggesting HighBP is a necessary
component in predicting the target. To reduce the possibil-
ity of multicollinearity, we can remove features that have
a high correlation with one another. Additionally, we can
minimize overfitting by removing features that have a low
correlation with the target and are less likely to be impor-

tant in predicting the target. Finally, we can try to mini-
mize subjective features as much as possible to reduce bias
or extra noise in the dataset. Some immediate conclusions
we can draw from the correlation matrix: Correlations be-
tween features and the target are generally low, many over-
lapping features exist, and there exist some negative corre-
lations between the feature and the target such as Income
or Education.

3.3 Data cleaning and preprocessing

After our initial data analysis, we can remove features char-
acterized by a low correlation with the target, features that
have a high correlation with one another, and features that
are subjective. We can also remove any missing values in
the dataset. We can also normalize the data to ensure that
all features are on the same scale. Normalization is impor-
tant because it ensures that each feature contributes equally
to the model. For instance, if we have a feature that ranges
from 0 to 1000 and another feature that ranges from 0 to 1,
the model will give more weight to the feature that ranges
from 0 to 1000. Normalization ensures that the model does
not give more weight to a feature simply because it has a
larger range. Normalization also ensures features are con-
textualized with respect to other data observations. We’ll
utilize a method known as Min-Max scaling to normalize
the data. Min-Max scaling scales the data to a fixed range,
usually between 0 and 1. This is done by subtracting the
minimum value of the feature and dividing by the range of
the feature.

3.4 Final Data Analysis

Now, after normalizing features and removing unnecessary
features, we can re-verify the validity of our data by replot-
ting the correlation matrix. Although some features still
share some correlation, through reasoning we can deter-
mine some features are inherently correlated even though
they are somewhat independent. For instance, the features
HighBP and Cholesterol are correlated because HighBP can
be caused by high cholesterol. But removing one of these
features would only make our model more inaccurate as
they are both independent features with importance to the
overall prediction.

Figure 1. Pearson correlation matrix after data preprocessing
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3.5 Data Splitting and Output Label Encoding

After cleaning and preprocessing the data, we can split the
data into training and testing sets. We can then encode the
target labels to ensure that the model can understand the
target labels. We can use a method known as Label Encod-
ing to convert the target labels into a numerical format. La-
bel Encoding is a technique used to convert categorical data
into numerical data. We can then train the model on the
training data and evaluate the model on the testing data.
We'll use a test size of 0.2 to ensure that 20% of the data
is used for testing and 80% of the data is used for training.
We'll also set the random seed to our predefined value of 42
to ensure reproducibility of the results.

3.6 Training Multiple Classification Models

After splitting the data and encoding the target labels, we
can train multiple classification models on the training data.
We can use models such as Logistic Regression, Random
Forest, and Support Vector Machine to make predictions on
the testing data. We can then evaluate the performance of
each model using metrics such as accuracy, precision, re-
call, and F1 score. These metrics provide a measure of how
well the model is performing on the testing data. For in-
stance, accuracy measures the percentage of correct predic-
tions made by the model, precision measures the percentage
of true positive predictions out of all positive predictions
made by the model, while recall measures the percentage of
true positive predictions out of all actual positive instances,
and F1 score is the harmonic mean of precision and recall.
We can use these metrics to determine which model is per-
forming the best on the testing data and make predictions
on new data based on the best performing model. Notice we
are using an extra parameter "class_weights" in the model
training to account for the imbalanced nature of the dataset.
This is because the dataset contains more negative samples
than positive samples. By using class weights, we can give
more importance to the positive samples and ensure that
the model is not biased towards the negative samples. In
our specific application, we want to try to minimize false
negatives while maximizing accuracy. You can read more
about why in the discussion section.

3.7 Defining a weighted binary cross-entropy loss
function

We can define a weighted binary cross-entropy loss func-
tion to account for the imbalanced nature of the dataset.
The weighted binary cross-entropy loss function assigns
different weights to the positive and negative samples in
the dataset. This allows the model to give more importance
to the positive samples and ensure that the model is not bi-
ased towards the negative samples. Specifically, we’ll use
the following function when training the Neural Networks
in later sections.
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3.8 Defining a series of Neural Networks

Alibrary known as Tensorflow simplifies the process of cre-
ating Neural Networks. Neural Networks vary in perfor-
mance based on numerous factors such as the number of
layers, the number of neurons in each layer, the activation
function, the optimizer, and dropout. First, we can define
a set of multiple neural networks - focusing on the num-
ber of layers and neurons in each layer in addition to the
dropout. For classification tasks, normally activations such
as ReLU are used in hidden layers while the sigmoid acti-
vation is used in the output layer. The sigmoid activation
function is used in the output layer because it outputs a
value between 0 and 1, which is suitable for binary clas-
sification tasks. ReLU is used in hidden layers because it is
computationally efficient and helps the model learn com-
plex patterns in the data. Dropout is used to prevent over-
fitting by randomly setting a fraction of the input units to 0
at each update during training. This helps the model gen-
eralize better to new data and improve performance on the
testing data.

3.9 Using Grid Search to find the best Neural Network

We can train the neural networks on the training data and
evaluate the performance of each neural network on the
testing data using constants for the number of epochs, batch
size, and validation split. In the context of training neural
networks, an epoch is one complete pass through the train-
ing data, batch size is the number of samples processed be-
fore the model is updated, and validation split is the frac-
tion of the training data to be used as validation data. All
these are known as hyperparameters and can be tuned to
improve the performance of the model. We can use a tech-
nique known as Grid Search to find the best hyperparame-
ters for the neural networks. Grid Search is a technique used
to find the best hyperparameters for a model by searching
through a grid of hyperparameters and evaluating the per-
formance of the model on the testing data. Since we defined
11 hyperparameters for each of the 5 neural networks, we’ll
need to tune 48 hyperparameters in total. So we’ll need to
train a total of 240 neural network models to find the best
hyperparameters. We can then use the best hyperparame-
ters to train the final neural network model and make pre-
dictions on new data.

3.10 Evaluating Model Performance

After training the neural networks with hyper-parameter
tuning, we can evaluate the performance using metrics such
as accuracy, precision, recall, and F1 score. Remember, al-
though some models might have a higher accuracy, we need
to consider the other metrics to ensure the model is per-
forming well on the testing data. We can visualize the per-
formance of the model using a confusion matrix. A confu-
sion matrix is a table that is often used to describe the per-
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formance of a classification model on a set of data for which
the true values are known. The confusion matrix consists of
four values: true positive, true negative, false positive, and
false negative. We can use these values to calculate met-
rics such as accuracy, precision, recall, and F1 score. We
can also visualize the confusion matrix using a heatmap to
get a better understanding of how the model is performing
on the testing data. We can then use these metrics to deter-
mine if the model is performing well on the testing data and
make predictions on new data based on the best performing
model.

3.11 Finding the best model

First, we define a custom metric to penalize false posi-
tives (FP) and false negatives (FN) more severely by squar-
ing these values: ‘Custom Metric = alpha * (FP?) + beta
* (FN?)". This formula allows us to adjust the importance
of false positives and false negatives using weights ‘alpha’
and ‘beta’. Next, we implement the calculation of this cus-
tom metric. We define a function ‘calculate_custom_metric’
that computes the custom metric based on the confu-
sion matrix of each model. Then, we evaluate all mod-
els using the custom metric with specified weights (‘al-
pha = 0.0005° and ‘beta = 0.1°). This involves comput-
ing the custom metric for each model’s confusion ma-
trix. Finally, we select the best model by identifying
the one with the lowest custom metric value. We use
the following approach: ‘min(res, key=lambda x: cal-
culate_custom_metric(res[x][ confusion_matrix’], 0.0005,
0.1)). Here, we ensure the selected model minimizes false
positives and false negatives, with a higher emphasis on
minimizing false negatives.

3.12 Ineffectiveness of SMOTEENN due to dataset
noise

We attempted to use the SMOTEENN technique to bal-
ance the dataset. However, the technique was ineffective
due to the presence of noise in the dataset. SMOTEENN
is a combination of the SMOTE (Synthetic Minority Over-
sampling Technique) and Edited Nearest Neighbors (ENN)
techniques. SMOTE generates synthetic samples for the mi-
nority class, while ENN removes noisy samples from the
dataset. However, in our case, the dataset contains noise
that cannot be effectively removed by ENN. As a result, the
SMOTEENN technique was unable to balance the dataset
effectively. Therefore, we need to explore other techniques
to balance the dataset and improve the performance of the
models.

3.13 Oversampling using SMOTE

We can use a technique known as Synthetic Minority Over-
sampling Technique (SMOTE) to oversample the positive
samples in the dataset. SMOTE is a technique used to bal-

ance the class distribution in a dataset by generating syn-
thetic samples of the minority class. This helps improve
the performance of the model on the testing data by giv-
ing more importance to the positive samples. We can then
train the model on the oversampled data and evaluate the
performance of the model on the testing data. We can use
the same metrics as before to evaluate the performance of
the model and make predictions on new data based on the
best performing model. In theory, by oversampling the pos-
itive samples, we can improve the performance of the model
on the testing data and make more accurate predictions on
new data.

3.14 Training Multiple Neural Networks with SMOTE

After oversampling the positive samples in the dataset, we
can train multiple neural networks on the oversampled
data. Notice how we no longer need the class weights since
the dataset is now balanced meaning the model will not be
biased towards the negative samples.

3.15 Using SMOTE with Weighted Binary
Cross-Entropy Loss Function

For experimental purposes, we can combine the use of
SMOTE with the weighted binary cross-entropy loss func-
tion to see if we can further improve the performance of the
model. By using both techniques, we can give more impor-
tance to the positive samples and ensure that the model is
not biased towards the negative samples.

4 Results

4.1 Model Accuracy and Performance

Our Decision Tree Classifier achieved an accuracy range
of 85.1% to 85.3%. While this accuracy is promising, it
does not fully represent the model’s effectiveness given
the imbalanced nature of the dataset (90% negative and
10% positive for heart disease). Realizing the limitation
of accuracy, we evaluated the model using additional
metrics such as precision, recall, and F1 score. These
metrics provided a more nuanced view of the model’s
performance, particularly in handling the imbalanced
dataset. However, the most critical aspect was the model’s
ability to correctly identify positive cases (high recall),
which improved significantly after balancing the dataset
with SMOTE. Our final model, Neural Network 4 with
Dropout (16-10-0.3), demonstrated superior performance
and robustness compared to other models.
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Figure 2. The confusion matrix plot of the chosen model

4.2 Overall

In summary, our project successfully achieved its primary
goal of developing a machine learning model to predict
heart disease risk. While the initial model’s accuracy was
promising, the real success lay in our iterative improve-
ments, particularly in addressing dataset imbalance and re-
fining our evaluation metrics. By focusing on metrics be-
yond accuracy and ensuring our model was interpretable
and actionable for users, we created a tool that could sig-
nificantly impact public health awareness and individual
health outcomes. Future work will focus on further enhanc-
ing model accuracy, expanding the dataset, and integrating
real-time health data for more dynamic predictions.

5 Discussion

5.1 Choosing the performance testing metrics

Getting into this project, we overvalued the importance of
using accuracy as a metric to test the results of our Al model.
We were under the false implication that the higher the ac-
curacy of our model, the better it is suited to predict heart
attack/disease based on input health related parameters for
an individual. Using accuracy as the sole testing metric for
our project, we began training different models like De-
cision Tree Classifier, Random Forest, etc to check which
model gave us the highest value for accuracy. We set a goal
to achieve 95% testing accuracy, and saw progression to-
ward this goal as Decision Tree Classifier gave us an accu-
racy of 85%, and the Random Forest model gave us an accu-
racy of 90%. Even though we were satisfied with the results
we realized that we should change our focus to maximiz-
ing the percentage of true positives for a health care based
Al model. We want to minimize the cases where the model
predicts that the person does not have a chance of heart at-
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tack or heart disease, when the person may actually be at
risk. It is much better to use a metric like Recall to test the
performance of our AI Model.

5.2 Significance of the results

Analyzing the significance of our results, we see that the
recall score of true positives for our model is 83% while
the accuracy of the model is 67%. The recall score tells us
how good the model is at predicting the percentage of true
positive results. The low accuracy means there might be
more cases where we falsely predict a person has a chance
of heart attack or heart disease when in reality they might
not be at risk. We think this is a valid sacrifice to make as
it is better to show more caution in our predictions, and a
person may still choose to get further diagnosis through a
doctor.

5.3 Lessons Learned

The reason why we might not be getting higher scores for
some of our performance metrics may be caused by the im-
balanced dataset that we chose to use. The whole founda-
tion of the AI Model is based on the choice of dataset, and as
we did not consider this as an issue early in the project, we
were limited by the scope of improvements we could make.
The original kaggle dataset had 90% negative results and
10% positive results for heart attack/disease. This makes it
harder to train a dataset to accurately predict positive re-
sults due the weight of negative results in training the pre-
diction model. It would be better to do more research in
picking a more balanced dataset to train the model for its
future iterations.

6 Conclusion

We were able to achieve our goal of creating a machine
learning model to determine if the user is at risk of heart dis-
ease. This accomplishment was made possible through rig-
orously experimenting with multiple models and leveraging
our knowledge of neural networks. Despite the challenges
posed by the imbalanced data from the Kaggle dataset we
were able to overcome this obstacle through applying ap-
propriate weights and fine-tuning our hyperparameters.
These efforts ensured that our model would minimize false
positives and false negatives. A higher emphasis was placed
on reducing the number of false negatives as they can lead
to missed opportunities for early intervention. Although
this model was built with the user’s best interests in mind,
it is still important to note that this model is not a substi-
tute for professional medical advice. Rather, it should be
used as a supplemental resource in conjunction with advice
from their doctor and healthcare professionals. We hope
that this tool will have a positive impact in reducing the dev-
astating effects of heart disease and encourage users to have
informed conversations with their healthcare providers.
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performance of the model such as a heatmap of the
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